ON A POWDER CONSOLIDATION PROBLEM

PIERRE A. GREMAUD*, C.T. KELLEYt, T.A. ROYAL}, AND KRISTY A. COFFEY §

Abstract. The problem of the consolidation of an aerated fine powder under gravity is consid-
ered. The industrial relevance of the problem is discussed and a mathematical model is introduced.
The mathematical structure is that of a coupled system for three unknowns, pressure, stress and
height of the powder in the (axisymmetric) bunker containing it. The system itself consists of a
parabolic PDE, an ODE and an integral equation determining a free boundary corresponding to the
height of the powder. Existence and uniqueness of a solution is established. A numerical method
based on a formulation of the semidiscretized problem as an index 1 DAE is proposed and imple-
mented. The feasilibility of the approach is illustrated by computational results.
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1. Introduction. One important factor determining the mechanical properties
of fine powders is the possible presence of an interstitial fluid, say air. Indeed, any
pressure gradient clearly translates into an additional body force. In gravity flow,
this force may be of the order of the weight density. One then speaks of fluidization,
and the air-powder system essentially behaves as a liquid. This paper is concerned
with the “opposite” phenomenon: consolidation. More precisely, consider storing
some fine powder in a bunker or silo, see Figure 1.1. Inevitably, some air will get
trapped during filling. The corresponding partial fluidization can have very serious
and unwanted consequences in practice and may result, upon retrieval of the material,
in uncontrollable flows and flooding. The excess air does diffuse through the powder
and eventually escapes through the top surface. A natural question is then: how long
does one have to wait for the air-powder system to settle and allow for safe handling?
This is the motivation of this paper. We note that similar questions may apply in
Soil Mechanics in general and the study of landfills in particular.

By a powder, we mean a material consisting of many individual solid particles of
sizes roughly between 10~"m and 10~%m [10]. If the particles are much larger, then
the gas can circulate nearly freely between them and thus is not an important factor.
Although the present study could be easily generalized to any type of axisymmetric
container, we consider for the sake of simplicity a vertical cylindrical bunker containing
a granular material subject to gravity, see again Figure 1.1. We work under several,
more restrictive, simplifying assumptions. First, the problem is made essentially one-
dimensional by assuming all the physical variables to be uniform across horizontal
sections. Such a simplification is clearly not fully justifiable in general. However, it
has been shown to lead to meaningful asymptotic results in the context of a so-called
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bunker§~© top surface

~_ A
Ho | F=— oz

F1g. 1.1. Geometry and coordinate systems for the vertical cylindrical bunker. The height of
the column of powder of time t is denoted H(t).

Janssen analysis [6] of the behavior of columns of granular materials, [10], p.84-90.
The present study can in fact be viewed as a generalization of Janssen’s original
approach to fine powders, where the presence of air cannot be neglected.

The model that is derived in Section 2 directly results from classical conservation
principles together with Darcy’s law. The unknowns are the pressure of the gas p,
the vertical stress o and the height of the column of powder H. The mathematical
structure of the problem is nonstandard as it consists of a system of three equations:
a parabolic PDE, an ODE and an integral equation, which corresponds to a nonlocal
equation for the top free boundary. An earlier and slightly different model was derived
in [1]. In Section 3, a much simpler auxiliary “toy problem”, that roughly corresponds
to heat conduction in an expanding rod is considered, see also [9] for a numerical study
of a closely related case. That problem shares some, but not all, of the difficulties of
the full problem, and its analysis is meant to provide a road map for what is covered
in the rest of the paper. Section 4 is devoted to the analysis and numerical analysis
of the full problem. Existence and uniqueness of a solution is established. A simple
numerical method is proposed. Essentially, the height H is expressed as a function
of the other variables. This expression is used to transformed the problem into one
defined in a fixed spatio-temporal domain. Then, the remaining system, involving
now two unknowns, is semidiscretized in space. This results in a DAE which is solved
through the use of a linearized Implicit Euler method. The feasibility and efficiency of
the method is illustrated in Section 5 where computational experiments are presented.
Finally, some closing remarks are offered in Section 6.

2. The model. We denote by T' the solid density, i.e., the actual density of
the particle; I' is assumed to be constant. The density p of the gas is an unknown
function of the time ¢ and the position z, i.e. the height, see Figure 1.1), under the
above simplifying assumption. A most important quantity is the bulk density denoted
by «v. The bulk density can be defined as the effective density of the granular material.
More precisely, if f; stands for the volume fraction occupied by the solid, we have

(2.1) v=[fL+ (1 - fs)p.
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Fi1c. 2.1. Graph of the bulk density v as a function of the stress o.

Typically, the gas density p is at least three orders of magnitude less than I". Conse-
quently, the solid fraction fs can in fact by approximated by

fs & %
The bulk density is found to increase with the application of increasing stresses. The
following relation is well supported by experimental evidence [7]

(2:2) ¥ = m(l+ ),
Om

where 0 < 8 < 1 is the coefficient of compressibility, v,, > 0 and o, > 0 being two
material constants and where ¢ stands for the vertical stress. Note that above formula
makes sense only for “reasonable” values . Indeed, one does not expect  to increase
without bounds for increasingly large stresses. For instance v should certainly not
exceed I'. Accordingly, the mathematical analysis of the problem was be done under
the following assumptions on +, see Figure 2.1, which are consistent with (2.2) for o
not too large

(23)y€C®(R), Y0)=vm>0, 0<~(0)<H<T, 0<v(0) <7y, Vo

In what follows, the cylindrical container is assumed to be of constant circular cross-
section A, but this is not essential, see §6. The spatial coordinates are taken as the
cylindrical coordinates r and z, see Figure 1.1. Under the assumption of horizontal
uniformity, no angular variable is needed. We denote by H (¢) the height of the column
of powder at time ¢. Since no powder escapes during the consolidation process, the
total mass M of solid in the bunker is conserved. Under the above approximation of
fs, the global conservation of solid reads

H(t)
(2.4) | et nya =

where R denotes the radius of the container. The above equation can be considered
as “the” equation for H, i.e., the relation defining the top free-boundary. Its non-local
character should be noted. Local conservation of solid and gas yield

(2'5) Oy + 0, (’7 us) =0,
0,

(2.6) (1 =)o) +8.(p(1 = L) uy) =
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where us and u, stand for the velocity of solid and gas respectively.
The gas is assumed to be ideal and isothermal. In other words, if p denotes the
pressure of the gas, we have
P _ Po
(2.7 - =—,
P Po
where pg and po are two constant reference values. Velocities and pressure are related
to each other through Darcy’s law, i.e.,

(2.8) ug —us = —K(v)9.p,

where K = K (v) is the permeability. The gas flow resulting from a pressure gradient
is obviously also dependent on the bulk density. Here, we take

(2.9 Ko =Ko (1)
Yo
where Ky and g are reference values and a is a positive constant. The parameters (3,
Oms Ym, G, Ko and 7o appearing in (2.2) and (2.9) can be determined experimentally.
Given the symmetry of the problem as considered, the stress tensor 7' has the
form

T:[JM Urz:|‘

UTZ O—ZZ

In first approximation, we will assume that the vertical and horizontal stresses are
principal stresses. This amounts to neglecting the contribution from o, in T, again
a questionable assumption in some cases [10], p.84-90.

Next, consider a balance of forces acting on an infinitesimal slice of radius R and
height dz of the material, see again Figure 1.1. The various forces are
weight of solid: —y 7 R2 §z;
if 7, is the wall shear stress, there is an upward force of 27 Rz 7y;
pressure at bottom: p(z), and top: —(p(z)+dp); this creates a force —m R? dp;
stress at bottom: o0,.(2), and top: —(0,,(2) + d0,.); (compressive stresses
are taken as positive for granular material); this creates a force —m R? 0.
The resulting force balance gives

2
0,0 +0.p— =Tw +7=0.
R
Further, by applying the law of sliding friction on the wall, one finds

Tw = HwOrr,

where i, is the coefficient of wall friction. Finally, the two remaining components of
the stress tensor T' are related through a plasticity model. The powder is taken to be
an ideal, cohesionless, Coulomb material [10]. Since we assume vertical and horizontal
stresses to be principal stresses, this implies that their ratio has to be constant. More
precisely, we have

o 1Fsindg
0., 14sing

(2.10)
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where § is the angle of internal friction, i.e., the coefficient of internal friction y is
given by p = tand. The angle § is also equal to the angle of repose of the material.
The plus or minus signs in (2.10) correspond to either the realization of the active
state if J = };::gg, i.e., 0., > oy, Or the passive state if J = }f:—iﬁg, ie., 0, < Opp.
We will work here under the assumption that the material is in the active state, since
this state is the one observed upon filling. This however has very little consequence
on the rest of the study (change of the value of the constant J).

Using both (2.10) and the form of 7,, given above, we can eliminate o from the
equations. Denoting by ¢ the remaining stress component o,,, we get

(2.11) 0,0+ 0,p—ko+v=0,

where the constant k is defined by k& = 2u,, J/R. We now eliminate the velocities
from the system. Relations (2.5) and (2.8) combine into

Oy + 0:(yuy +vK0.p) = 0.

After integration in space, and taking into account the boundary conditions u,4(0,t) =
0 and 9.p(0,t) = 0, we obtain

1 z
Uy = —— / Oyy — K 0,p.
Y Jo

Next, using (2.7), one can rewrite (2.6) in terms of the pressure p, eliminating p from
the problem. Plugging the expression for ug in (2.6) then yields our last missing
equation

Mo Pan_ L N Y o Kp _
(1 F)atp vaﬂ 0: (p(7 F))/o oy—(1 F)ﬁz(pKasz T 0:70:p = 0.

One last simplification is considered. The last term in the previous relation has very
little influence on the problem. Although not obvious analytically, this was carefully
verified numerically: for realistic values of the various parameters, the solution changes
by less than .1% when switching this term on and off. Omitting this term simplifies
somewhat the analysis on the one hand, and does not appear to influence the solution
in any observable way on the other hand. In conclusion, and under the previous
remarks and assumptions, the unknowns o, p and H are to be determined by the
following system of three integrodifferential equations in {(2,t);0 < ¢,0 < z < H(¢t)}

_Nop— Lo 1LY [(on_ 2 _
212 (- Dap-Lon-0.(sC-D) [ on-a-Do.wxom o
(2.13) 0.0+0.p—ko+vy =0,

H(t) )
(2.14) / v(0(3,4)) dz = .

0

Those equations are combined with the initial and boundary conditions

(2.15) (-, 0) = po,
(2'16) J(H(t)a t) =0, 8zp(01t) =0, p(H(t), t) = Patm;

where pq¢m, stands for the value of the atmospheric pressure.
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3. An auxiliary problem. To guide us, as well as the reader, through the anal-
ysis of the above problem, an auxiliary problem that shares some of the nonstandard
features encountered in the previous section is first analyzed. The problem below can
be regarded as the description of the behavior of a one-dimensional rod subject to
thermal expansion. Although such an interpretation is not strictly needed, one can
think of the unknowns appearing below as the temperature 6, the linear density of
the rod p and its length at time ¢, s(t). The problem is then

Ol — 02,0 =0 0<z<s(t),t>0
0(0,t) = 0(s(t),t) =0 t>0,
0(x,0) = y(x) 0 <z < s(0),

o)
/ p(0(z, ) dz = M =1 t>0,
0

where 6y is a given initial condition. We start by mapping the problem into a fixed
spatial domain by introducing the variables

y=a/s(t)  uly,t) =06(z,1).
The heat equation then turns into

ys'(t) 1 _
s O st =

3tu - 0.

Now, fos(t) p(0(z,t))dx = fol p(u(y,t)) s(t)dy = 1 and thus

! and §'(t) = _Jo PATTTY fol P/ (w)0hu dy

B Jo plu(y, 1)) dy ( I p(u) dy)2

Finally, we obtain

(3.1) S+ m (/01 o' (u) dyu dgj) Oyu — (/01 p(u) dgj) Oyyu =10

(3.2) u(0,t) = u(l,t) =0,
(3.3) u(y,0) = uo(y) = bo(y 5(0)).

2
3.1. Analysis of the auxiliary problem. Let a(u) = (fol p(u) dy) and let

H(u) be the solution operator for the linear equation d;w — a(u)dy,w = f. More
precisely, w = H(u) f implies

0w — a(u)Oyyw = f,
w(0,t) = w(l,t) =0,
w(y,O) = Wo-

Now, let L be defined by

L(u)w =w + —

m (/01 p' (u)w dg]) dyu.



POWDER CONSOLIDATION 7

L is a rank-one perturbation of I. It is easy to check directly that

(fol p'(u)g dz?) y Oyu _ ( I3 o (u)g dg) yByu

Therefore by (3.2) L(u) is nonsingular provided p(u(1,%)) = p(0) # 0. So, if u is the
solution of (3.1) then

1
a(u
(3.4 u=T0w = 1) (-2 yo,u [ Fwdudy).
p(0) 0
We can now state an existence theorem. The problem is solved over the time interval
(0,T), T > 0. As usual, for a nonintegral positive number a, C*([0,1]) denotes the
space of Holder continuous functions of exponent o on [0, 1]. The corresponding norm
is

@ _ o | A hu(z) - O lu(a)
K ||(0,1) = max |Oju(z) |+ sup
=0 .Z‘E(O,l) $7$I€(0,1)’$¢w/ |ZL’ _ Z'I |

a—[a] ’

where [a] stands for the integral part of a. We set @ = (0,1) x (0,7) and extend
the definitions and notations to functions in @ in the obvious way [8]. A general
discussion of compatibility conditions of the type used in the next result can be found
in [8], p.319. Here for instance, the compatibility conditions of order 1 for (3.1), (3.2),
(3.3) are

uo(0) = uo(1) = u{)(0) = uf(1) = 0.

THEOREM 3.1. Assume the density function p is of class C', is positive, uni-
formly bounded and bounded away from zero. Let a > 0 be a nonintegral number.
Then if ug € C3+([0,1]) and satisfies the compatibility conditions of order [2£2] +1,
the problem (3.1), (3.2), (3.3) admits a unique solution in C*t*1+/2(]0,1] x [0,T))
(017

Proof. Let Xo = C2*®1+2/2(() and X; = €3+ "% (Q). Using classical regularity
results, see e.g. [8], p-320, Theorem 5.2, one obtains 7 : Xy — X7, where T in defined
in (3.4). Hence 7 is a compact mapping on Xg. Further

provided | p' | = maxger | p'(z)| and || uo || are small enough.

17 lx < € (luo G5 + 10 el ullg /7).

Invoking the Schauder Theorem, we get existence of a solution in Xy for |p’ | and
[| wo ||E3J;;’) small enough. Uniqueness is easily obtained through classical arguments
thanks to the regularity of the above solution via an adaptation of the maximum

principle, see [8], p.22, Theorem 2.8. 00

3.2. Discretization of the auxiliary problem. Let Az = 1/(N + 1) and let
x; =iAz,1=0,1,... N +1. A simple finite difference approximation of (3.1) is given
by

N
1 X; .
atUi+§ jzglep’(Uj)atUj E(Uﬂ_l —Ui_1)+D(U)z’:0, i=1,...,N,
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where S = Z;Y:JBI wip(U;), wi’s, 5 =0,1,...,N + 1 are the weights of the numerical
quadrature and where Uy = Un41 = 0. Further, in the previous relation

2
N+1

D)= | wip(U;)| AU € RV,
j=0

where A = (=9,,)n € RN*N is a discretization of the second order space derivative
operator with homogeneous Dirichlet boundary conditions, obtained for instance by
using the classical three-point formula, and U is the N x 1-vector [Uy...Un]. Let
C = (0y)n € RN*N be the matrix corresponding to the discretization of the convective
term in (3.1), here Cj; = (d;i+1 — di41,:)/(2Az), and let w be the N x 1-vector
w = [w; ...wn]. One can define the discrete analog to L(u) as

Ly(U) =1+ %(mCU)(wp'(U))T € RN*N,

Note the outer product in the definition of Ly (U). Using the new variable Z = §,U,
ie.,, Z; = 0U;, i = 1,..., N, the semidiscretized in space problem can be written as
the following DAE

(3.5) oU =2

(3.6) 0=Ly(U)Z + D(U).

By construction, Ly (U) is equal to I plus a rank-one perturbation. Elementary Linear
Algebra implies

(zCU)(wp' (V)"
S+ (zCU)Twp'(U)"

LyU) ' =1-

In other words, L, (U) is nonsingular provided S+(zCU)Twp' (U) # 0. As was the case
above for the continuous problem, this nonsingularity condition can be considerably
simplified and turns out to be very mild. Indeed after summation by parts and some

rearrangements, one obtains, for wy = wy41 = % andw; =...=wy = Az
N+1 N U
i+1 — Uj1
S+ OO wn/(U) = 3 wspll) + Y20 i)

]‘ I
= 5 (p(UN) + p(Un+1)) + O(Az | p" | | 8U %),

where §U is the vector of all first divided differences. Therefore, the corresponding
nonsingularity condition

1
(3.7) §(P(UN) + p(Un+1)) + O(Az | p" |o [ 0U [5,) # O,
is clearly a discrete analogue to p(0) # 0 since Un41 = 0.
In conclusion, our system is an index-1 DAE under condition (3.7). We apply a
linearly Implicit Euler discretization, see e.g. [5], p.427 or [2], Chap. 4, and get

_ n+l _ 7/n n
(3.8) I AtT ] [ U U Z

—AtJ" —AtL,(U™) | | Z7H - zn ] - At[ Ly(UMZ"+ DU |
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where At is the time step. To find the expression of J™, we need to take the derivatives
with respect to U of both D(U) and Ly (U)Z, since J" = L}, (U™)Z™ + D'(U™). This
can be done by direct calculations; those expressions are omitted here.

The matrix to be inverted in (3.8) is nonsingular for At small enough. For the
present type of index-1 DAEs, the usual convergence results turn out to be still sat-
isfied. One easily obtains the following result.

THEOREM 3.2. Let (U°, Z°) be consistent initial values, i.e., U? = 6y(s(0) y;),
i=1,...,N and Z° = —L,(U°) " 1D(U°). Then, under condition (3.7), one has

NUE) U |+ 2(@") — 2" || = O(At)

Proof. See [3], Theorem 1, p.504. Note that the contractivity condition (1.4) in
[3] is trivially satisfied here because the algebraic equation is linear in the algebraic
variable Z. O

4. The full problem. Let us now turn to the powder problem. As in §3, the
problem is first rewritten in a constant domain. To keep the notational changes to a
minimum, the original non-transformed variables from §2 are denoted with a bar, and
the new transformed ones are taken without one. The relations between them are

y==z/H(t) ply,t)=pz,t) oyt)=0(z1).

When rewriting the pressure equation (2.12) in terms of the new variables, both
H(t) and H'(t) appear in the terms involving time derivatives. Notice that M =

Jo" (o (=, 1)) d= = g 1(o(y, 1)) H(r) dy, amd thus

(4.1) H(t) = L and H'(t) = T fO ~'(0)0o dy

Jo 10y, 1) dy (e Aot 0) dy)”

Having “solved” the equation for H, we substitute and get

v(o) A(y'(0)0r0)
(4.2) (-1 )(at A0 y@,p)
(

P ) + A0 (0)00) ”
e (6”( )+ Aoy ¥ ))

oy (e~ 1Y [ (oo + A0 o N
N i _
0= T ([ ) a,x0m =0
where A(u) = = fo y) dy. The stress equation becomes
(4.3) 8,0 + yp+ L (ko +7)=0.
o Y(o)d

4.1. Analysis of the full problem. Define the integral operators

B(u) = /1 u(z)dz and B(u) = /Oyu(z)dz
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The boundary conditions on the transformed variables are
Oyp(0,t) =0, p(1,t) =patm and o(1,t) =0.
The initial condition on p is
p,0) =po(y), y€(0,1).

Hereafter, the above problem is rewritten as a parabolic problem for the stress o, and
thus an initial condition o will have to be provided. It is found from (4.3). In other
words, the initial stress gg is taken as solution to

Oyoo + Oypo + f(00) =0, forO<y<1,

00(1) =07
where f(o) = %(V(U) - "5‘7)-

LEMMA 4.1. Let py € C([0,1]) with |py(y) | < ply, for anyy, 0 <y < 1. Then if
v satisfies (2.3), there exists a unique function oo verifying the above requirements.
Proof. We construct a sequence {af }n>0, 0§ = 0, by successively solving

0yoy + Oypo + fn(og) =0 for 0 <y <1,
og(1) =0,

where f,(0) = (7(0) = ko). The function f, is Lipschitz in o with

M
[T o5 @) g
Lipschitz constant L = ,YM(V('X) — k). Therefore, there exists a unique function o§,
and the above sequence is well defined. By using the bounds

M M (5~ ko) = £+ (o),

N =———0< <

(o) 5 U_fn(a)_v
in place of f, (o) in the above problem, one can explicitly construct uniformly bounded
in n sub and supersolutions to the above problem. Hence, the sequence {of} is
bounded uniformly in n, v admitting upper and lower bounds by assumption, see
(2.3). By construction, {9,08} is consequently also uniformly bounded. Therefore,
the sequence {of} is equicontinuous and thus by Ascoli-Arzela’s theorem, one can
select from it a subsequence converging uniformly to a Lipschitz function o9 which
solves the above problem.

Uniqueness follows from classical arguments due to the local Lipschitz property
of f as a function of ¢ and to the regularity and boundedness of the solution to the
above problem. [0

By integrating the stress equation (4.3) between y and 1, 0 <y < 1, we obtain

1
4.4 p=P(0) = Ppatm — 0+ ———B(—ko + v(0)).
Taking the derivative with respect to ¢ yields
A(7'(0)040) 1

(4.5) Oyp = =040 — B(—ko +v(0)) + B(—k0i0 ++'(0)0;0).

A(v(0))? A(v(0))

The next step in the analysis consists of eliminating one of the two unknowns p or o
to obtain an integral equation similar to (3.1). Here, the pressure p will be eliminated
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to obtain a problem in term of the stress ¢ only. This requires some manipulations
of integral equations involving Volterra and rank-one operators.
By a Volterra operator, we mean an integral operator of the form

Y 1
Vuw)=14 Myﬂﬁd@dzorVuw)=i/ oy, 2yu(z) dz,
Y

where the kernel v is assumed to be in L2. Tt is well known that the spectrum of a
Volterra operator is the single point 0. Rank-one operators can be expressed as

RM@Z@&MHMMZH@@MUZMMA7%@de,

where (-,-) denotes the L2(0, 1) inner product.
LEMMA 4.2. Let V be a Volterra operator, R = r; ® r. be a rank-one operator,
and L=I1+V + R. Then L is nonsingular if and only if

(46) 1 + (TT‘7 (I + V)ilTl) 7£ 07

in which case

_ I+V) Ir)er _
= (1= (I +V)Th
(- ettt U +V)

Proof. Under the above assumption, (I + V) is clearly nonsingular; in fact, (I +
V)~!is equal to its Neumann series Y>> (—1)"V™. Therefore, the result is a simple
consequence of the Sherman-Morrison-Woodbury formula, see e.g. [4], p.51. O

Using the above result, one can thus write

(I+V+R™-I=V+R,

where V' and R are themselves respectively Volterra and rank-one operators. We
define the following Volterra and rank-one maps

L —ku +7'(0)u), an u:M
Aoy 2wt (o)w), and Rlu) = 2000

By setting L = I +V + R, (4.5) takes the form d;p = L(—0,0). The rank-one map R
can be written as R = r; ® r, with

Viu) = — B(—ko + 7).

B(—ko +7)

= nd r, =7'(o).
D) A

T

Since by (2.3), the kernel of V' is bounded, one sees that the nonsingularity condition
of L coming from (4.6) reads here as follows. If b denotes

oo

T+V)T = (=V)"n,

i.e., the unique solution of

1 ', o1 ! B N
~aey |, 0@ = mhdi = s o) - ds
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then L is not singular provided

1
(4.7) 1 +/0 ~'(o)bdg # 0.

The next step consists of rewriting the full problem (4.2), (4.3) in term of o alone.
The terms containing unintegrated time derivatives in the pressure equation (4.2) are

(1= /T)dp - gaw = —a(0)00 = (1= 1) (V + R)do.

where a(0) = (1—v/T) + £ 4/(¢), and where P is defined in (4.4). Using (4.3), the
(o)

diffusive term takes the form

(1~ 1) A((0))? 0, 0K 0,p) = (1 - 112 A((0))? 8, (P(0) KD, + o) QL)

with

Qo) = 220 (1= 210 0, (P()K (3(0) - o).

The problem can then be rewritten as

(@) L@0) = (1 - 17 4(+(0))? 8, (P(0)K8,0) — al0) Q(o),

T
where L = I + V + R with
wa—aéﬂl—VgHV()
+a%5@<waa%T—#>B<ﬂ@u+{gﬁ;?g%%d)j
Rw) = 5 1= T2 R
77 50 Ao D 3 4= D Sy v

We have implicitly assumed the coefficient (o) to be nonzero; this will be justified
below where it will be shown under what condition a(c) is positive. The rank-one
map R can be expressed as R = 7; ® 7., where

. 1 2, 1 Plo) yo,vr 1 . (o) y9,P (o)
=@ T T o) 7o) AR ale) T T ) ARG)
Fr =1, =7'(0)

Assuming

(4.8) 1+ (Fr, [+ V)717) #£0,

the operator L can be inverted using Lemma 4.2, leading to

(4.9) 0y —1(0)8y (P(0)K8y0) + Q(0) = F(0),
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where

10) = 2o (1= 1) 46,

F(o) = (V + R) (n(a)ayw(a)mya) - Q(a)) .

1
o

In the above equation (4.9) for o, it is easily checked that the diffusive coefficient is
positive provided P(o) stays positive. However, as can be seen from (4.4), P(o) is
positive only for small enough values of o, due to the growth condition on v, see (2.2),
(2.3). Accordingly, we first regularize (4.9) to ensure parabolicity, establish existence
of a solution to the corresponding problem, and show under what conditions the result
extends to the original nonregularized problem.

Let (0,T), T > 0, the interval in which the problem is to be solved. Considering
P from (4.4) as an operator from C([0, 1] x [0, T]) into itself, we define a “regularized”
P, as follows. If & stands for the unique solution of v(¢) = ko, see Figure 2.1, then
we set 0* = min(pgtm,d). Further, for any ¢ € C([0,1] x [0,T]) and for some € > 0,
we define

Se=A{(y,1) €[0,1] x [0, T];0(y,t) < 0™ — €}
The regularized function P, is taken as

P(o)|s; = P(o)|s:,
P.(o) >€, Yo e€(C([0,1] x[0,TY)),

P, is a smooth function of o.

The corresponding regularized problem is then

(4.10) Oio — nP.KOyyo —n0y(P.K)0yo + Q.(0) = F,(0),
4.11 0yo(0,t) + 7————— 0(0,t)) — ko(0,t) ) =0,
(11) ( )+f07(0(y7t))dy(v(( ) - ka(0.0)

(4.12) o(1,t) =0,
(4.13) o(y,0) = oo(y),

with Q. and F, are defined are in a natural way, P being replaced by P,. The condition
(4.11) at y = 0 is a direct consequence of (4.3) and d,p(0,t) = 0.

LEMMA 4.3. Let 0 < a < 1, and let the nonsingularity conditions (4.7) and (4.8)
be satisfied. Let also the assumptions of Lemma 4.1 be verified, assuming further that
po € C312([0,1]). Then, if the initial stress og € C31%([0,1]) from Lemma 4.1 satisfies
the compatibility condition of order 1, the regularized problem (4.10)-(4.13) admits a
solution o in C>+t1+2/2([0,1] x [0, T)) provided +',, Ko, T and || oo ||Egt;l) are small
enough.

Proof. As was done for the auxiliary problem, a linearized solution operator
corresponding to the above regularized problem is constructed. More precisely, for a
given u € X, = C*t1+a/2((), consider T;(u) = o where o satisfies

010 — n(u)Pe (U)K(u)ayyo - TZ(U)@y (Pe (U)K(u))ayu + Qc(u) = Fe(u),

8,00, 1) + (w(um, 1)) — ko 0, t)) _o,

o (u(g, ) dj
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A0yo(1,t) + o(1,t) — Aoyu(l,t) =0,
U(y70) = 0'0(:[/),

In order to avoid having to treat a mixed Dirichlet-Robin problem, the given condition
at y = 1, i.e., o(1,t) = 0, has been rewritten; the coefficient A # 0 is to be chosen
below. Note that when u = o is a fixed point of T, then o(1,t) = 0 and thus the
boundary value is correctly recovered.

Using classical regularity results, see e.g. [8], p. 320, Theorem 5.3, one obtains
the existence of a unique solution o = 7T¢(u) to the above linearized problem. Further

2
o llxg = 117:(u) I, < c(uao liosy + Ko (lullgt/>)

M o N
# 20t (0, 1G5 + 191G ),

m

where A was chosen so that the contributions from both boundary terms “match” in
the above inequality. Therefore, 7. maps X in X; = C3+a’3+Ta(Q), and is thus a
compact mapping on Xy. The existence of a fixed point o = T¢(o¢) results from the
Schauder Theorem. The function o, clearly satisfies (4.10)—(4.13). O

Note that the restriction a < 1 in the statement of Lemma 4.3 is not essential.
Indeed, higher values of a can be considered as the price of having to bound higher
derivatives of the function v and satisfying a compatibility condition of order 1+ [%] .

Clearly now, using again the classical regularity result invoked in the latter proof,
for small enough data, the largest value of o, will not exceed ¢* — ¢, threshold above
which the regularization of P takes place. Uniqueness of the solution follows from
the same argument as in the proof of Theorem 3.1. We have thus established the
following existence result for the main problem.

THEOREM 4.4. IfT > is small enough and under the assumptions of Lemma 4.3,
there exists o € C*tolta/2(Z) p € C*Hol+e/2(Z) gnd H € C'/2([0,T)) which
satisfy (2.12)-(2.16), where 2 = {(2,t);0 <t <T,0< z < H(¢)}.

4.2. Discretization of the full problem. The problem is discretized under
its formulation (4.2), (4.3), i.e., we work with the transformed variables in a fixed
rectangular domain (0,1) x (0,7). Due to the different type of boundary conditions,
the mesh related quantities are slightly modified from §3. We set Az = 1/N and
let x; = (i —1)Az, i =1,...,N + 1. The semidiscretized variables are the pressure
P(t) = [Pi(t),...,Pn(t)] and the stress X(t) = [21(t),...,Zn(t)]- The boundary
conditions at y = 1 read Pn41 = Patm and Xn41 = 0. We introduce the following
discretized operators

Cp: N x N matrix corresponding to a second order centered discretization of 9, with
pressure boundary conditions (at y = 0 and y = 1),

D: N x N matrix corresponding to a second order centered discretization of 0y,
with pressure boundary conditions (at y = 0 and y = 1),

Cy: N x N matrix corresponding to a second order essentially centered discretization
of 0, with stress boundary condition (at y = 1).
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The construction of Cp, and D is elementary. For C,, we take

15

[ -3 4 -1 0 0
-1 0 1 0 0
1 0 -1 0 1 0
C _
77 2Ax
0o ... 0 -1 0 1
0 ... 0 1/6 —4/3 1/6 |

We also introduce discretized counterparts to the integral operators A and B
N+1

1 3 i
AA(W) = o > wiW;  and (Ba(W))i = w;W.
j=1 j=1

Finally, we introduce some notation for the time derivative of the two main unknowns
P and ¥ by setting U = §;P and V = 0;X. The discretized problem is then

(4.14) P =U

—a-2 A4a(v'V) Py A0
(4.15) 0=(1 I‘)(U+ () YC’,,P) 5 (ny+ A0 ¥ YC’JE>
(A Leop PV B (1) + 280V 5
(G- por-Zres) (Bam+ 20 v e,m)
g

+(1 = $)Aa(1)*D(P,E)P + bel = f(P,U,V, )

(4.16) 0=CoX+ CpP+bc2+ 1 (=X +7) =9g(P,U,V, %)
AA()

(4.17) /= =V,

where v and 4’ are to be understood as the vectors v(X) and 4'(X) and where
Y = [21,...,2,]). The two vectors bel and be2 result from the presence of bound-
ary conditions. Finally, the vector-vector multiplications in the above expressions are
to be understood component by component.

The structure of (4.14)—(4.17) is slightly more complicated than that of the
semidiscretized problem (3.5), (3.6). More precisely, (4.14)—(4.17) has the form

P =1,
0=f(P,U,V,5),
0=g(P,0,0,%),

ox =V.

The above system corresponds to a semi-explicit index 2 DAE or equivalently to a
fully implicit index 1 DAE [5], §VIL.3, VIL4. Indeed, it is clearly equivalent to

(4.18) 0= f(P,8,P,8,%,%),
(4'19) 0 = g(PJ 05 0’ E)’

which is the discrete counterpart to (4.2), (4.3). Note that g1 = C}, being nonsin-
gular, one can solve (4.19) into P = P(X), which corresponds to (4.4). Now, by
differentiating (4.19), we get

glatP + g45t2 =0.
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This leads to
(420) BtP = —01;1946,52,

which is a discretized version of (4.5). Using again the Sherman-Morrison-Woodbury
formula, one can check that g4 is also nonsingular provided that

(4.21) C, + ﬁ(v) (—KI + dz'ag(’y'(E))) is not singular,
_ ) (!
(4.22) 1 MAA(y)Q(W(E) %) (wy' (X)) #0.

It is easy to verify directly from the matrix structures that for Az small enough (4.21)
is satisfied. Condition (4.22) is the counterpart here to (3.7) for the auxiliary problem
and (4.7) for the nondiscretized full problem. Note that it is satisfied if max; w;y., is
small enough. Finally, plugging (4.20) into (4.18), we get

0= f(P(Z),—C, '940;%, 0,3, %).

Under an involved nonsingularity condition that is the discrete counterpart to (4.8),
the latter equation can be solved for ;3. It is thus a fully implicit index 1 DAE.
Results similar to the one use in §3.2 to establish error estimates can also be found
for the present type of problems, see e.g. [11], [5] Chap. VII. We do not pursue this
issue further in this paper.

The time discretization of (4.14)—(4.17) is again taken as linearly Implicit Euler,
which reads here

I —AtIl 0 0 prtl _ pn un
At AL fR —ALfRE AL fP grtt —yn | At Vi
—Atgl —Atghy -—Atg}y -—Atg} yntl —yn |7 g"

0 0 —AtI I il _yn vn

In the previous relation, the subscripts denote derivatives with respect to the corre-
sponding variables. All the first partial derivatives of f and g are needed. For f, we
note that fI' = diag(1 — v(X™)/T"); the rest of the terms are evaluated numerically
through finite differences. For g, we obtain

g1 =Cp
92 =95 =0
68 = Cy + o (kI + diag(y/ (5"))) S (=R + (D) @y (D).

An(v) M Aa(y)
Note the outer product in gy. The position of the free boundary can be determined
a posteriori through (4.1), i.e., H" = m.

5. Computational results. We now illustrate the feasibility and efficiency of
the above numerical method by discussing some computational results. The bulk
density-stress relationship is taken as (2.2). The following values of the various pa-
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pressure (Ibf/ft?) stress (Ibf/ft?)
T T T T T T T T 90
2210
80
2200
F 42190
- {2180 - 190
put L {2170 o e
£ 2. < 2.
2 =2
2 L 12160 2 L 440
2150 30

2140 20

2130
10

2120

100 400 500 100 200 300 400 b5
time (s) time (s)

0

o

0

F1G. 5.1. Calculated pressure and stress fields in the original geometry; N = 100, NT = 100,
T = 500s.

rameters have been used and were chosen so as to correspond to a realistic situation

B, = .25
Ym = 60 lbs/ft?
om = 13 lbs/ft?
v = 80 lbs/ft?
T= 200 lbs/ft3
Ky= 107* ft*lbs—!s7!
a= 4
k= 1ft71;

the atmospheric pressure is puim = 2116.2 lbs/f’c2. The problem is initialized as
follows. The initial height of the powder column is prescribed; here H(0) = 5 ft. The
bunker is assumed to have a unit cross section (R =~ .56ft). A initial pressure field pg
which is consistent with the boundary conditions in (2.16), is given as

p(e) = paun (14 5800 (2.

In the calculations below, we use N = 100 and NT = T'/At¢ = 100.
Figure 5.1 gives a typical illustration of the behavior of the problem. Note that
Figure 5.1 is related to the original geometry of the problem, i.e., the variable is z
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stress (Ibffft?)

120
90
80 100 R
3.5
80 B
- 160 —~~
3 N
= &
Rt —
- L {50 Ee
£ 25 ~ 60 B
o 7
()
< L a0 2
2 4+
7

N
o

20

0 L L L L
0 500 1000 1500 2000 0 1

2 3
time (s) height (ft)

F1G. 5.2. Calculated stress field in the original geometry; left: calculation from 0 to T = 2000s,
right: asymptotic stress profile; N = 100, N'T' = 400.

not y. As expected, one observes a settlement of the powder. For both graphs, the
top line corresponds to the position of the top of the powder column, i.e., the free
boundary. Further, the pressure field is found to asymptotically converge to a uniform
pressure value corresponding to pg¢m, the atmospheric pressure, i.e., equilibrium of
the pressure is established. The stress field is also found to converge to a stationary
distribution o which, in term of the original variable z, is solution to

0,0 + (—k0o +7(0x)) = 0, 0<z< Hu,
UOO(HOO) = 07

where H, is the asymptotic value of the height of the powder column. From Fig-
ure 5.1, one can observe that the powder has not fully settled after 500s. Figure 5.2
illustrates the convergence to the asymptotic stationary state after 2000s.

6. Conclusion. A mathematical model of the phenomenon of powder consolida-
tion has been derived and analyzed. A robust numerical method has been proposed,
and successfully implemented. Several questions and generalizations deserve further
study.

The model is a generalization of Janssen’s approach, but it does rely on the same
two crucial assumptions (quasiuniformity on horizontal cross sections, and horizon-
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tal/vertical alignment of the principal stresses) that may be questionable in some
cases. How to bypass those assumptions will be the object of future work. From a
more applied view point, the bunker containing the powder may be axisymmetric but
of variable cross section. This aspect may be easily included in the present model.
Further, one may consider adding some powder from the top and/or retrieving some,
typically through outlets at the bottom of the bunker. While the first case seems to
bring in some modeling difficulties, the second one (retrieval) just amounts to chang-
ing one boundary condition and can thus be handled without difficulty in the present
approach.
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